ÉCOLE NATIONALE DES INGÉNIEURS DES TRAVAUX RURAUX ET DES TECHNIQUES SANITAIRE CONCOURS D'ENTRÉE

1978

OPTION BIOLOGIE- MATHÉMATIQUES DEUXI'EME ÉPREUVE DE MATHÉMATIQUES

Durée: 3 heures

Un corrigé

-T-

- 1. (a) On remarque que $(\sqrt{x}-\sqrt{y})^2 \geq 0$ pour tous x et y positifs, puis par développement de cette inégalité on obtient $\sqrt{xy} \leq \frac{x+y}{2}$. L'inégalité $a_n \leq b_n$ est une conséquence immédiate de l'inégalité précédente, avec $x=a_{n-1}$ et $y=b_{n-1}$ (les deux suites sont bien définies et toujours positives).
 - (b) On a pour tout $n \in \mathbb{N}$:

$$b_{n+1} = \frac{a_n + b_n}{2} \le \frac{b_n + b_n}{2} \le b_n.$$

Donc $(b_n)_{n\in\mathbb{N}}$ est décroissante. De même,

$$a_{n+1} = \sqrt{a_n b_n} \ge \sqrt{a_n a_n} = a_n.$$

Donc $(a_n)_{n\in\mathbb{N}}$ est croissante.

On sait déjà que $b_{n+1} - a_{n+1} \ge 0$. De plus,

$$b_{n+1} - a_{n+1} = \frac{b_n + a_n - 2\sqrt{b_n a_n}}{2}.$$

Puisque $0 \le a_n \le b_n$ et par croissance de la fonction $\sqrt{.}$, on a $\sqrt{a_n b_n} \ge a_n$. On en déduit que

$$b_{n+1} - a_{n+1} \le \frac{b_n + a_n - 2a_n}{2} = \frac{1}{2}(b_n - a_n).$$

De la relation précédente, on déduit par une récurrence immédiate que, pour tout entier naturel n, on a

$$0 \le b_n - a_n \le \frac{1}{2^n} (b_0 - a_0).$$

Ainsi, $(b_n - a_n)_{n \in \mathbb{N}}$ converge vers 0. On en déduit que $(b_n)_{n \in \mathbb{N}}$ et $(a_n)_{n \in \mathbb{N}}$ sont deux suites adjacentes : elles convergent vers la même limité, notée M(a,b).

2. • Pour tout $\lambda \in \mathbb{R}_+^*$, les suites $(\lambda a_n)_{n \in \mathbb{N}}$ et $(\lambda b_n)_{n \in \mathbb{N}}$ vérifient les relations de récurrences (2), donc elles convergent vers $M(\lambda a_0, \lambda b_0) = M(\lambda a, \lambda b)$. D'où par unicité de la limite :

$$M(\lambda a, \lambda b) = \lambda M(a, b)$$
 (*).

- Soient les suites $(a'_n)_{n\in\mathbb{N}}$ et $(b'_n)_{n\in\mathbb{N}}$ définies par : $\begin{cases} a'_0=b\\ a'_n=a_n,\ n\in\mathbb{N}^* \end{cases}$ et $\begin{cases} b'_0=a\\ b'_n=b_n,\ n\in\mathbb{N}^* \end{cases}$. Les suites $(a'_n)_{n\in\mathbb{N}}$ et $(a_n)_{n\in\mathbb{N}}$ (respectivement $(b'_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$) ne différent que par leur premier terme, elles ont donc même limite et donc M(b,a)=M(a,b).
- Les suites $(a'_n)_{n\in\mathbb{N}}$ et $(b'_n)_{n\in\mathbb{N}}$ définies par : $\begin{cases} a'_0=a_1\\ a'_n=a_{n+1},\ n\in\mathbb{N}^* \end{cases}$ et $\begin{cases} b'_0=b_1\\ b'_n=b_{n+1},\ n\in\mathbb{N}^* \end{cases}$ sont convergentes de même limite et donc $M(a,b)=M(a_1,b_1)=M\left(\sqrt{ab},\frac{a+b}{2}\right)$.

1

• Soient les suites (a_n) (a'_n) , (b_n) , $(b'_n)_n$ définies par les relations (2) et $\begin{cases} a_0 = a \\ b_0 = b \end{cases}$, $\begin{cases} a'_0 = a' \\ b'_0 = b \end{cases}$ avec $a \le a'$.

Montrons par récurrence sur $n \in \mathbb{N}$ que $a_n \le a'_n$. La propriété est vraie pour n=0. Supposons $a_n \le a'_n$. On a $a_{n+1} = \sqrt{a_n b_n}$ et $a'_{n+1} = \sqrt{a'_n b_n}$, donc $a_{n+1} \le a'_{n+1}$. D'où $\forall n \in \mathbb{N}$, $a_n \le a'_n$ et en passant à la limite quand n tend vers l'infini $M(a,b) \le M(a',b)$.

- 3. Si a=b=1 on montre par récurrence que $\forall n \in \mathbb{N}$, $a_n=b_n=1$. Donc $f(1)=M(1,1)=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=1$.
 - D'après la relation (*) $M(x,1) = xM\left(1,\frac{1}{x}\right)$ et donc $f\left(\frac{1}{x}\right) = \frac{1}{x}f(x)$.
 - Comme $(a_n)_{n\in\mathbb{N}}$ est croissante et $(b_n)_{n\in\mathbb{N}}$ est décroissante, on a $\forall n\in\mathbb{N}, a_1=\sqrt{ab}\leq a_n\leq b_n\leq b_1=\frac{a+b}{2}$, soit en prenant la limite quand n tend vers l'infini et en utilisant le prolongement des inégalités

$$\sqrt{ab} \le M(a,b) \le \frac{a+b}{2}.$$

En particulier, si a=x et b=1 on obtient $\sqrt{x} \le f(x) \le \frac{1+x}{2}$

• D'après l'égalité 454 on a :

$$f(x) = M(x,1) = M\left(\sqrt{x}, \frac{1+x}{2}\right) = \sqrt{x}M\left(1, \frac{1+x}{\sqrt{x}}\right) = \sqrt{x}f\left(\frac{1+x}{2\sqrt{x}}\right).$$

En combinant 8 et 9 on obtient $f(x) = \sqrt{x} f\left(\frac{1+x}{\sqrt{x}}\right)$ et $f\left(\frac{1+x}{2\sqrt{x}}\right) = \frac{1+x}{2} f\left(\frac{2\sqrt{x}}{1+x}\right)$. D'où :

$$f(x) = \frac{1+x}{2} f\left(\frac{2\sqrt{x}}{1+x}\right).$$

- 4. (a) Soit $x_0 \in]0, +\infty[$. Montrons que les limites à droite et à gauche coïncident. Désignons par $l = \lim_{x \to x_0^+} f(x)$ et $l' = \lim_{x \to x_0^-} f(x)$. Comme f est croissante alors $l' \leq f(x_0) \leq l$. D'autre part, $\frac{l}{x_0} = \lim_{x \to x_0^+} \frac{f(x)}{x}$ et $\frac{l'}{x_0} = \lim_{x \to x_0^-} \frac{f(x)}{x_0}$ et puisque $x \mapsto \frac{f(x)}{x}$ est décroissante alors $\frac{l'}{a} \leq \frac{l}{x_0}$. D'où l' = l et donc f est continue en x_0 .
 - (b) Il suffit de montrer que f est croissante sur $]0, +\infty[$ et que $x\mapsto \frac{f(x)}{x}$ est décroissante sur $]0, +\infty[$. En effet, d'après la question 2 de cette partie $M(x,1)\le M(y,1)$ si 0< x< y et l'égalité $f\left(\frac{1}{x}\right)=\frac{f(x)}{x}$ montre que $x\mapsto \frac{f(x)}{x}$ est décroissante sur $]0, +\infty[$.
- 5. (a) D'après l'inégalité $\sqrt{x} \le f(x) \le \frac{1+x}{2}$ montre que $\lim_{x \to +\infty} f(x) = +\infty$.
 - (b) f admet une limite en 0 car elle est croissante sur $]0,+\infty[$, cette limite n'étant autre que la borne inférieure de l'ensemble $\{f(x)\mid x>0\}$. Soit l cette limite, d'après l'égalité $f(x)=\frac{1+x}{2}f\left(\frac{2\sqrt{x}}{1+x}\right)$ on $l=\frac{l}{2}$ soit l=0
 - $\begin{array}{l} l=0.\\ \text{(c)} \ \lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} f\left(\frac{1}{x}\right) = \lim_{t\to 0^+} f(t) = 0. \ \text{Donc la courbe représentative de } f \ \text{admet une branche parabolique dans la direction } (0x). \end{array}$

-II-

1. Comme $v_0 = u_0 \cos(\theta)$, on obtient :

$$v_1 = \frac{u_0 + v_0}{2} = a \frac{1 + \cos(\theta)}{2} = a \cos^2\left(\frac{\theta}{2}\right),$$

puis:

$$u_1 = \sqrt{u_0 v_1} = a \cos\left(\frac{\theta}{2}\right).$$

Pour continuer à exprimer les termes v_n , on exprime (v_n) indépendamment de (u_n) : pour tout n > 0,

$$u_{n+2} = \sqrt{v_{n+2}u_{n+1}} = \sqrt{\frac{u_{n+1} + v_{n+1}}{2} \times u_{n+1}} = \sqrt{\frac{\frac{u_{n+1}^2}{u_n} + u_{n+1}}{2} \times u_{n+1}} = u_{n+1}\sqrt{\frac{1 + \frac{u_{n+1}}{u_n}}{2}}.$$

Ainsi, on trouve par exemple:

$$u_2 = u_1 \sqrt{\frac{1 + \cos\left(\frac{\theta}{2}\right)}{2}} = u_1 \sqrt{\cos^2\left(\frac{\theta}{4}\right)} = a\cos\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{4}\right)$$

(les cosinus étant positif, θ étant par définition dans $\left]0,\frac{\pi}{2}\right[$). Ainsi, on voit apparaître le début du produit de cosinus de la forme $\prod_{k=1}^n\cos\left(\frac{\theta}{2^k}\right)$. On effectue alors une récurrence. Soit, pour tout n dans $\mathbb N$, la propriété $P(n): u_n=a\prod_{k=1}^n\cos\left(\frac{\theta}{2^k}\right)$. Nous venons de montrer que P(0) et P(1) sont vrais. Soit $n\in\mathbb N$. On suppose que P(n) et P(n+1) sont vrais. Alors, par les hypothèses de récurrence,

$$\frac{u_{n+1}}{u_n} = \cos\left(\frac{\theta}{2^{n+1}}\right),\,$$

donc, d'après la relation établie ci-dessus,

$$u_{n+2} = u_{n+1}\sqrt{\frac{1+\cos\left(\frac{\theta}{2^{n+1}}\right)}{2}} = u_{n+1}\cos\left(\frac{\theta}{2^{n+2}}\right) = a\prod_{k=1}^{n+1}\cos\left(\frac{\theta}{2^k}\right)\cos\left(\frac{\theta}{2^{n+2}}\right) = a\prod_{k=1}^{n+2}\cos\left(\frac{\theta}{2^k}\right).$$

Par conséquent, P(0) et P(1) sont vraies, et pour tout n dans \mathbb{N} , P(n) et P(n+1) entraînent P(n+2). D'après le principe de récurrence, P(n) est vraie pour tout n dans \mathbb{N} .

Vérifions ensuite par récurrence $u_n = \frac{a}{2^n} \frac{\sin(\theta)}{\sin\left(\frac{\theta}{2^n}\right)}$. la propriété est vraie pour n=0. On suppose que la propriété est vraie pour $n\in\mathbb{N}$. Alors

$$u_{n+1} = u_n \cos\left(\frac{\theta}{2^{n+1}}\right) = \frac{a}{2^n} \frac{\sin(\theta)}{\sin\left(\frac{\theta}{2^n}\right)} \times \cos\left(\frac{\theta}{2^{n+1}}\right) = \frac{a}{2^n \sin(\theta)} \times \frac{1}{2\sin\left(\frac{\theta}{2^{n+1}}\right)\cos\left(\frac{\theta}{2^{n+1}}\right)} \times \cos\left(\frac{\theta}{2^{n+1}}\right) = \frac{a}{2^{n+1}} \frac{\sin(\theta)}{\sin\left(\frac{\theta}{2^{n+1}}\right)} \times \cos\left(\frac{\theta}{2^{n+1}}\right) = \frac{a}{2^n \sin(\theta)} \times$$

Cela montre que la propriété est vraie pour n+1. D'après le principe de récurrence, $u_n=\frac{a}{2^n}\frac{\sin(\theta)}{\sin\left(\frac{\theta}{2^n}\right)}$ pour tout n dans \mathbb{N} .

D'après la relation $u_n = \sqrt{u_{n-1}v_n}$, on obtient $v_n = \frac{u_n^2}{u_{n-1}} = \dots$

2. Supposons a>b, montrons par récurrence sur $n\in\mathbb{N}$ la propriété $P(n):0\leq v_n\leq v_n$. La propriété P(0) est satisfaite d'après l'hypothèse a>b. Soit $n\in\mathbb{N}$ tel que P(n) est vrai. Alors on obtient :

$$0 \le v_{n+1} \le u_n$$

puis : $u_{n+1} > \sqrt{(v_{n+1})^2} \ge v_{n+1}$. Ainsi, la propriété P(n+1) est encore vraie. D'après le principe de récurrence, on a donc, pour tout $n \in \mathbb{N}$, $0 \le u_n \le v_n$. Soit $n \in \mathbb{N}$. On déduit alors de la relation définissant v_{n+1} , de la même manière que ci-dessus, que : $v_n \le v_{n+1} \le u_n$, puis de la seconde relation, que

$$u_{n+1} = \sqrt{v_{n+1}u_n} \le \sqrt{u_n^2} = u_n,$$

d'où la croissance de (v_n) et la décroissance de (u_n) .

 $(v_n)_{n\in\mathbb{N}}$ est croissante et majorée par u_0 , et $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par v_0 . Donc, d'après le théorème de la limite monotone, (u_n) et (v_n) convergent.

Appelons β la limite de (v_n) et α la limite de (u_n) . Alors, on montre comme plus haut, en passant à la limite dans la relation définissant v_{n+1} , que $\alpha = \beta$.

Par conséquent, d'après le calcul précédent, pour tout $n \in \mathbb{N}$,

$$u_n = \frac{a}{\theta} \left(\frac{\theta}{2^n} \right) \frac{\sin(\theta)}{\sin\left(\frac{\theta}{2^n}\right)}.$$

On peut donc conclure:

$$N(a,b) = \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} u_n = a \frac{\sin(\theta)}{\theta}.$$

3. La propriété est vraie pour n=0 puisque $u_0=a$ et $v_0=b$. Montrons par récurrence sur $n\in\mathbb{N}$ la propriété $P(n):u_n\geq a_n$ et $v_n\geq b_n$.

La propriété P(0) est satisfaite d'après les hypothèses. Soit $n \in \mathbb{N}$ tel que P(n) est vraie. Alors on obtient :

$$v_{n+1} = \frac{u_n + v_n}{2} \ge \frac{a_n + b_n}{2} = b_{n+1}$$

et comme $(v_n)_{n\in\mathbb{N}}$ est croissante

$$u_{n+1} = \sqrt{u_n v_{n+1}} \ge \sqrt{a_n v_n} \ge \sqrt{a_n b_n} = a_{n+1}.$$

Ainsi, la propriété P(n+1) est encore vraie. D'après le principe de récurrence, on a donc, pour tout $n \in \mathbb{N}$, $u_n \ge a_n$ et $v_n \ge b_n$.

4. Ici
$$a = \frac{\sqrt{2}}{4}$$
 et $b = \frac{1}{4} = a \cos\left(\frac{\pi}{4}\right)$. D'où $N\left(\frac{\sqrt{2}}{4}, \frac{1}{4}\right) = \frac{\sqrt{2}}{4} \frac{\sin\left(\frac{\pi}{4}\right)}{\frac{\pi}{4}} = \frac{2}{\pi}$.

5. Comme $\forall n \in \mathbb{N}, u_n \geq a_n$, alors $N(a, b) \geq \dot{M}(a, b)$.

On a
$$M\left(\frac{\sqrt{2}}{4}, \frac{1}{4}\right) = \frac{1}{4}M(\sqrt{2}, 1) = \frac{1}{4}f(\sqrt{2}) < \frac{1+\sqrt{2}}{8} < \frac{3}{8} \text{ et } N\left(\frac{\sqrt{2}}{4}, \frac{1}{4}\right) = \frac{2}{\pi} > \frac{3}{8}.$$
 Donc on peut pas avoir une égalité.

-III-

- 1. Si 0 < x < y, alors $\forall \varphi \in \left[0, \frac{\pi}{2}\right]$ on a $\sqrt{x^2 \cos^2 \varphi + \sin^2 \varphi} \le \sqrt{y^2 \cos^2 \varphi + \sin^2 \varphi}$, donc $\frac{1}{\sqrt{x^2 \cos^2 \varphi + \sin^2 \varphi}} \ge \frac{1}{\sqrt{y^2 \cos^2 \varphi + \sin^2 \varphi}}$ puis par intégration $F(x) \ge F(y)$, la fonction F est donc décroissante sur $]0, +\infty[$.
- **2.** Pour tous $x, y \in]0, +\infty[$, on a :

$$I(x,y) = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\varphi}{\sqrt{x^2 \cos^2 \varphi + y^2 \sin^2 \varphi}} = \frac{1}{y} \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\varphi}{\sqrt{\left(\frac{x}{y}\right)^2 \cos^2 \varphi + \sin^2 \varphi}}.$$

D'où:

$$yI(x,y) = F\left(\frac{x}{y}\right).$$

En particulier si x=1, on obtient $yI(1,y)=F\left(\frac{1}{y}\right)$. D'autre part, en faisant le changement de variable $\psi=\frac{\pi}{2}-\varphi$, bijectif et de classe \mathscr{C}^1 , on trouve I(a,b)=I(b,a). D'où $yI(1,y)=yI(y,1)=yF(y)=F\left(\frac{1}{y}\right)$. Ainsi,

$$\forall x \in]0, +\infty[, F\left(\frac{1}{x}\right) = xF(x).$$

- 3. Par composition $\frac{1}{F}$ est croissante et l'application $x \mapsto \frac{\frac{1}{F(x)}}{x} = \frac{1}{xF(x)} = \frac{1}{F\left(\frac{1}{x}\right)}$ est décroissante, donc d'après la question 4a) de la première partie $\frac{1}{F}$ est continue sur $]0, +\infty[$, donc F est bien continue.
- **4.** On $I(x,y) = \frac{1}{y}F\left(\frac{x}{y}\right)$, donc par composition $(x,y) \mapsto I(x,y)$ est continue sur $\left(\mathbf{R}_{+}^{*}\right)^{2}$.

-IV-

1. L'égalité $u = \sqrt{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi}$ montre que $a \le u \le b$. On a donc

$$\begin{split} u &= \sqrt{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi} \quad \Leftrightarrow \quad u^2 = a^2 \cos^2 \varphi + b^2 \sin^2 \varphi \\ &\Leftrightarrow \quad u^2 = a^2 + (b^2 - a^2) \sin^2 \varphi \\ &\Leftrightarrow \quad \sin^2 \varphi = \frac{u^2 - a^2}{b^2 - a^2} \\ &\Leftrightarrow \quad \sin \varphi = \sqrt{\frac{u^2 - a^2}{b^2 - a^2}} \ \operatorname{car} \, \varphi \in \left[0, \frac{\pi}{2}\right] \end{split}$$

D'où $\varphi = \arcsin\left(\sqrt{\frac{u^2-a^2}{b^2-a^2}}\right)$, $u \in [a,b]$. Ainsi, sur cet intervalle, on a :

$$\frac{\mathrm{d}\varphi}{\mathrm{d}u} = \frac{\frac{\mathrm{d}}{\mathrm{d}u} \left(\sqrt{\frac{u^2 - a^2}{b^2 - a^2}}\right)}{1 + \frac{u^2 - a^2}{b^2 - a^2}} = \frac{u}{\sqrt{(b^2 - u^2)(b^2 - a^2)}}$$

À l'aide du changement de variable $\varphi(u)=\arcsin\left(\sqrt{\frac{u^2-a^2}{b^2-a^2}}\right)$, on obtient donc :

$$I(a,b) = \int_0^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi}} = \int_a^b \frac{du}{\sqrt{(b^2 - u^2)(u^2 - a^2)}}.$$

2. (a) La fonction h est bien définie et dérivable sur l'intervalle [a,b] et on a :

$$\forall u \in [a, b], \ h'(u) = \frac{u^2 - ab}{2u^2}.$$

D'où le tableau de variations de h:

u	a	$\alpha = \sqrt{ab}$	b
h'(u)		- 0 +	
h(u)	$\frac{a+b}{2}$	$h\left(\alpha\right) = \sqrt{ab}$	$\frac{a+b}{2}$

(b) Soit $u \in [a, b]$ et $v \in \left[\sqrt{ab}, \frac{a+b}{2}\right]$. On a :

$$h(u) = v \Leftrightarrow \frac{u^2 + ab}{2u} = v$$

 $\Leftrightarrow u^2 - 2uv + ab = 0$
 $\Leftrightarrow u = v - \sqrt{v^2 - ab} \text{ ou } u = v + \sqrt{v^2 - ab}$

Le tableau de variations de la fonction h montre que, $\forall v \in [a, \alpha]$, $H_1(v) = v - \sqrt{v^2 - ab}$ et que $\forall v \in [\alpha, b]$, $H_2(v) = v + \sqrt{v^2 - ab}$.

3. Soit $u \in [a, b]$ et v = h(u), on a :

$$\begin{array}{lll} 2u\sqrt{\left(\frac{a+b}{2}\right)^2-v^2} & = & 2u\sqrt{\left(\frac{a+b}{2}\right)^2-\left(\frac{u^2+ab}{2u}\right)^2}\\ & = & \sqrt{u^2(a+b)^2-(u^2+ab)^2}\\ & = & \sqrt{-u^4+(a^2+b^2)u^2-a^2b^2}\\ & = & \sqrt{-(u^2-a^2)(u^2-b^2)} = \sqrt{(b^2-u^2)(u^2-a^2)}. \end{array}$$

Utilisons la relation de Chasles avec le point $\alpha = a_1$ et la relation précédente :

$$I(a,b) = \int_{a}^{\alpha} \frac{\mathrm{d}u}{\sqrt{(b^{2} - u^{2})(u^{2} - a^{2})}} + \int_{\alpha}^{b} \frac{\mathrm{d}u}{\sqrt{(b^{2} - u^{2})(u^{2} - a^{2})}}$$

$$= \int_{a}^{\alpha} \frac{\mathrm{d}u}{2u\sqrt{\left(\frac{a+b}{2}\right)^{2} - v^{2}}} + \int_{\alpha}^{b} \frac{\mathrm{d}u}{2u\sqrt{\left(\frac{a+b}{2}\right)^{2} - v^{2}}}$$

$$= \int_{a}^{a_{1}} \frac{\mathrm{d}u}{2u\sqrt{b_{1}^{2} - v^{2}}} + \int_{a_{1}}^{b} \frac{\mathrm{d}u}{2u\sqrt{b_{1}^{2} - v^{2}}}$$

4. (a) Sur l'intervalle $[a, \alpha]$, $v = h(u) \Leftrightarrow u = H_1(v) = v - \sqrt{v^2 - ab}$ et donc $\frac{\mathrm{d}u}{\mathrm{d}v} = \frac{\sqrt{v^2 - ab} - v}{\sqrt{v^2 - ab}} = \frac{-u}{\sqrt{v^2 - ab^2}}$. De même sur l'intervalle $[\alpha, b]$, $v = h(u) \Leftrightarrow u = H_2(v) = v + \sqrt{v^2 - ab}$ et donc $\frac{\mathrm{d}u}{\mathrm{d}v} = \frac{\sqrt{v^2 - ab} + v}{\sqrt{v^2 - ab}} = \frac{u}{\sqrt{v^2 - ab^2}}$, d'où :

$$I(a,b) = \int_{a}^{a_{1}} \frac{du}{2u\sqrt{b_{1}^{2} - v^{2}}} + \int_{a_{1}}^{b} \frac{du}{2u\sqrt{b_{1}^{2} - v^{2}}}$$

$$= \int_{b_{1}}^{a_{1}} \frac{-dv}{2\sqrt{v^{2} - a_{1}^{2}}\sqrt{b_{1}^{2} - v^{2}}} + \int_{a_{1}}^{b_{1}} \frac{dv}{2\sqrt{v^{2} - a_{1}^{2}}\sqrt{b_{1}^{2} - v^{2}}}$$

$$= \int_{a_{1}}^{b_{1}} \frac{dv}{\sqrt{(b_{1}^{2} - v^{2})(a_{1}^{2} - v^{2})}}$$

$$= I(a_{1}, b_{1})$$

(b) D'après la question précédente et par récurrence sur $n \in \mathbb{N}$, on obtient :

$$\forall n \in \mathbb{N}, \ I(a,b) = I(a_n,b_n).$$

Soit maintenant $\varepsilon > 0$ tel que $\varepsilon < M(a,b)$. Il existe un rang $n_0 \in \mathbb{N}$ tel qu'on ait à la fois :

$$\forall n \geq n_0, |a_n - M(a, b)| \leq \varepsilon \text{ et } |b_n - M(a, b)| \leq \varepsilon.$$

On a alors, pour tout $t \in \left[0, \frac{\pi}{2}\right]$ et tout $n \geq n_0$:

$$\frac{1}{\sqrt{(M(a,b)+\varepsilon)^2(\cos^2\varphi+\sin^2\varphi)}} \le \frac{1}{\sqrt{a_n^2\cos^2\varphi+b_n^2\sin^2\varphi}} \le \frac{1}{\sqrt{(M(a,b)-\varepsilon)^2(\cos^2\varphi+\sin^2\varphi)}},$$

soit:

$$\frac{1}{M(a,b) + \varepsilon} \le \frac{1}{\sqrt{a_n^2 \cos^2 \varphi + b_n^2 \sin^2 \varphi}} \le \frac{1}{M(a,b) - \varepsilon},$$

et par croissante de l'intégrale, il vient facilement :

$$\forall n \ge n_0, \ \frac{\pi}{2(M(a,b)+\varepsilon)} \le I(a_n,b_n) \le \frac{\pi}{2(M(a,b)-\varepsilon)},$$

Le terme du milieu de l'encadrement précédent est constant, égal à I(a,b), et ε peut être choisi aussi petit qu'on veut. Une fois qu'on a remplacé $I(a_n,b_n)$ par I(a,b), on n'a plus de dépendance en n, on peut donc sans problème faire tendre ε vers 0, et il vient :

$$I(a,b) = \frac{\pi}{2M(a,b)}^{1}.$$

En particulier, si $a=x\in \mathbf{R}_+^*$ et b=1 on obtient $I(x,1)=\frac{\pi}{2M(x,1)}$ ou encore $F(x)=\frac{\pi}{2f(x)}$.

$$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\varphi}{\sqrt{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi}}.$$

De telles intégrales, comme I(a,b) sont appelés des intégrales elliptiques. L'étude des intégrales elliptiques par Gauss, Abel et Jacobi a jouée un rôle central dans le développement des mathématiques du XIX siècle

^{1.} Selon la formule de I(a,b), le quart de périmètre de l'ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ est donné par la formule